Label 31200y
Number of curves $1$
Conductor $31200$
CM no
Rank $1$

Related objects


Learn more

Show commands for: SageMath
sage: E = EllipticCurve("y1")
sage: E.isogeny_class()

Elliptic curves in class 31200y

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.bj1 31200y1 \([0, 1, 0, 312, 17208]\) \(261568120/10024911\) \(-128318860800\) \([]\) \(25920\) \(0.81136\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 31200y1 has rank \(1\).

Complex multiplication

The elliptic curves in class 31200y do not have complex multiplication.

Modular form 31200.2.a.y

sage: E.q_eigenform(10)
\(q + q^{3} - 4q^{7} + q^{9} + q^{13} - 3q^{19} + O(q^{20})\)  Toggle raw display