Properties

Label 31200j
Number of curves $1$
Conductor $31200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.bc1 31200j1 \([0, -1, 0, 312, -17208]\) \(261568120/10024911\) \(-128318860800\) \([]\) \(25920\) \(0.81136\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200j1 has rank \(0\).

Complex multiplication

The elliptic curves in class 31200j do not have complex multiplication.

Modular form 31200.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4q^{7} + q^{9} + q^{13} + 3q^{19} + O(q^{20})\)  Toggle raw display