Label 31200bs
Number of curves $1$
Conductor $31200$
CM no
Rank $1$

Related objects


Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bs1")
sage: E.isogeny_class()

Elliptic curves in class 31200bs

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.bb1 31200bs1 \([0, -1, 0, 7792, 2135412]\) \(261568120/10024911\) \(-2004982200000000\) \([]\) \(129600\) \(1.6161\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 31200bs1 has rank \(1\).

Complex multiplication

The elliptic curves in class 31200bs do not have complex multiplication.

Modular form

sage: E.q_eigenform(10)
\(q - q^{3} + 4q^{7} + q^{9} - q^{13} - 3q^{19} + O(q^{20})\)  Toggle raw display