Show commands: SageMath
Rank
The elliptic curves in class 31200bp have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 31200bp do not have complex multiplication.Modular form 31200.2.a.bp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 31200bp
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 31200.c1 | 31200bp1 | \([0, -1, 0, -72558, -7496388]\) | \(42246001231552/14414517\) | \(14414517000000\) | \([2]\) | \(98304\) | \(1.4965\) | \(\Gamma_0(N)\)-optimal |
| 31200.c2 | 31200bp2 | \([0, -1, 0, -62433, -9673263]\) | \(-420526439488/390971529\) | \(-25022177856000000\) | \([2]\) | \(196608\) | \(1.8431\) |