Properties

Label 31200.y
Number of curves $1$
Conductor $31200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("y1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.y1 31200m1 \([0, -1, 0, -33, -32463]\) \(-1600/177957\) \(-455569920000\) \([]\) \(46080\) \(0.91596\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200.y1 has rank \(1\).

Complex multiplication

The elliptic curves in class 31200.y do not have complex multiplication.

Modular form 31200.2.a.y

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3q^{7} + q^{9} + 5q^{11} + q^{13} - 5q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display