Properties

Label 31200.x
Number of curves $1$
Conductor $31200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("x1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.x1 31200b1 \([0, -1, 0, 116867, 3231637]\) \(2758136205824/1668346875\) \(-106774200000000000\) \([]\) \(230400\) \(1.9567\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200.x1 has rank \(1\).

Complex multiplication

The elliptic curves in class 31200.x do not have complex multiplication.

Modular form 31200.2.a.x

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3q^{7} + q^{9} + 3q^{11} - q^{13} + 3q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display