Properties

Label 31200.n
Number of curves $1$
Conductor $31200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.n1 31200e1 \([0, -1, 0, 4467, 418437]\) \(153990656/1279395\) \(-81881280000000\) \([]\) \(82944\) \(1.3511\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 31200.n do not have complex multiplication.

Modular form 31200.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} - 3q^{11} + q^{13} + 3q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display