Properties

Label 31200.m
Number of curves $1$
Conductor $31200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.m1 31200bk1 \([0, -1, 0, 47, 97]\) \(109760/117\) \(-11980800\) \([]\) \(6144\) \(0.044900\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200.m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 31200.m do not have complex multiplication.

Modular form 31200.2.a.m

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} - 5q^{11} + q^{13} + 3q^{17} + O(q^{20})\)  Toggle raw display