Properties

Label 31200.h
Number of curves $1$
Conductor $31200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.h1 31200bl1 \([0, -1, 0, -3133, -68363]\) \(-53157376/1755\) \(-112320000000\) \([]\) \(27648\) \(0.89513\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200.h1 has rank \(1\).

Complex multiplication

The elliptic curves in class 31200.h do not have complex multiplication.

Modular form 31200.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} + q^{11} + q^{13} + 5q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display