# Properties

 Label 31200.cd1 Conductor $31200$ Discriminant $-2.060\times 10^{19}$ j-invariant $$-\frac{22400965661211136}{321826171875}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -2349133, 1402142363])

gp: E = ellinit([0, 1, 0, -2349133, 1402142363])

magma: E := EllipticCurve([0, 1, 0, -2349133, 1402142363]);

$$y^2=x^3+x^2-2349133x+1402142363$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(\frac{27457}{9}, \frac{4062500}{27}\right)$$ $\hat{h}(P)$ ≈ $1.4198091240246341226059972456$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$31200$$ = $2^{5} \cdot 3 \cdot 5^{2} \cdot 13$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-20596875000000000000$ = $-1 \cdot 2^{12} \cdot 3 \cdot 5^{17} \cdot 13^{3}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{22400965661211136}{321826171875}$$ = $-1 \cdot 2^{9} \cdot 3^{-1} \cdot 5^{-11} \cdot 13^{-3} \cdot 167^{3} \cdot 211^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.5108837067115609158764530836\dots$ Stable Faltings height: $1.0130175699345654191588412955\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $1.4198091240246341226059972456\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.21643748481403006655498087004\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $24$  = $2\cdot1\cdot2^{2}\cdot3$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $7.3751979772776739018207576933371413044$

## Modular invariants

Modular form 31200.2.a.cd

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{7} + q^{9} + 3 q^{11} + q^{13} - 3 q^{17} - 6 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 709632 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive 1 5 12 0
$3$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$5$ $4$ $I_{11}^{*}$ Additive 1 2 17 11
$13$ $3$ $I_{3}$ Split multiplicative -1 1 3 3

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add split add ordinary ordinary split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary - 2 - 1 1 2 1 1 1 1 1 1 1 1 1 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 31200.cd consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.780.1 $$\Z/2\Z$$ Not in database $6$ 6.0.118638000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.181398528000000.23 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.