Properties

Label 31200.be
Number of curves $1$
Conductor $31200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("be1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31200.be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31200.be1 31200bi1 \([0, -1, 0, 467, 26437]\) \(175616/4875\) \(-312000000000\) \([]\) \(46080\) \(0.88562\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31200.be1 has rank \(0\).

Complex multiplication

The elliptic curves in class 31200.be do not have complex multiplication.

Modular form 31200.2.a.be

sage: E.q_eigenform(10)
 
\(q - q^{3} + 5q^{7} + q^{9} - q^{11} - q^{13} - 3q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display