Properties

Label 3120.u
Number of curves $1$
Conductor $3120$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 3120.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3120.u1 3120y1 \([0, 1, 0, -3045, -67437]\) \(-762549907456/24024195\) \(-98403102720\) \([]\) \(3360\) \(0.88571\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3120.u1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3120.u do not have complex multiplication.

Modular form 3120.2.a.u

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 3 q^{7} + q^{9} + q^{11} - q^{13} + q^{15} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display