Properties

Label 3120.b
Number of curves $4$
Conductor $3120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3120.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3120.b do not have complex multiplication.

Modular form 3120.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} + q^{9} + q^{13} + q^{15} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3120.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3120.b1 3120q4 \([0, -1, 0, -19136, 973440]\) \(189208196468929/10860320250\) \(44483871744000\) \([2]\) \(6912\) \(1.3730\)  
3120.b2 3120q2 \([0, -1, 0, -3296, -71424]\) \(967068262369/4928040\) \(20185251840\) \([2]\) \(2304\) \(0.82366\)  
3120.b3 3120q1 \([0, -1, 0, -96, -2304]\) \(-24137569/561600\) \(-2300313600\) \([2]\) \(1152\) \(0.47709\) \(\Gamma_0(N)\)-optimal
3120.b4 3120q3 \([0, -1, 0, 864, 61440]\) \(17394111071/411937500\) \(-1687296000000\) \([2]\) \(3456\) \(1.0264\)