Show commands:
SageMath
E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 310206.q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
310206.q1 | 310206q2 | \([1, 0, 0, -237433631, -4362373486803]\) | \(-1480302302050395483730662419569/7364359653002993324767146804\) | \(-7364359653002993324767146804\) | \([]\) | \(190236032\) | \(4.0316\) | |
310206.q2 | 310206q1 | \([1, 0, 0, -18645971, 31710685857]\) | \(-716933257039953084158724529/19555843924966303678464\) | \(-19555843924966303678464\) | \([7]\) | \(27176576\) | \(3.0587\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 310206.q have rank \(0\).
Complex multiplication
The elliptic curves in class 310206.q do not have complex multiplication.Modular form 310206.2.a.q
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.