y 2 + x y + y = x 3 − 5334 x − 150368 y^2+xy+y=x^3-5334x-150368 y 2 + x y + y = x 3 − 5 3 3 4 x − 1 5 0 3 6 8
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 − 5334 x z 2 − 150368 z 3 y^2z+xyz+yz^2=x^3-5334xz^2-150368z^3 y 2 z + x y z + y z 2 = x 3 − 5 3 3 4 x z 2 − 1 5 0 3 6 8 z 3
(dehomogenize , simplify )
y 2 = x 3 − 6912243 x − 6994821042 y^2=x^3-6912243x-6994821042 y 2 = x 3 − 6 9 1 2 2 4 3 x − 6 9 9 4 8 2 1 0 4 2
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 1, -5334, -150368])
gp: E = ellinit([1, 0, 1, -5334, -150368])
magma: E := EllipticCurve([1, 0, 1, -5334, -150368]);
oscar: E = elliptic_curve([1, 0, 1, -5334, -150368])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z / 2 Z \Z/{2}\Z Z / 2 Z
magma: MordellWeilGroup(E);
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
30 30 3 0 = 2 ⋅ 3 ⋅ 5 2 \cdot 3 \cdot 5 2 ⋅ 3 ⋅ 5
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
81000 81000 8 1 0 0 0 = 2 3 ⋅ 3 4 ⋅ 5 3 2^{3} \cdot 3^{4} \cdot 5^{3} 2 3 ⋅ 3 4 ⋅ 5 3
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
16778985534208729 81000 \frac{16778985534208729}{81000} 8 1 0 0 0 1 6 7 7 8 9 8 5 5 3 4 2 0 8 7 2 9 = 2 − 3 ⋅ 3 − 4 ⋅ 5 − 3 ⋅ 1 3 3 ⋅ 4 7 3 ⋅ 41 9 3 2^{-3} \cdot 3^{-4} \cdot 5^{-3} \cdot 13^{3} \cdot 47^{3} \cdot 419^{3} 2 − 3 ⋅ 3 − 4 ⋅ 5 − 3 ⋅ 1 3 3 ⋅ 4 7 3 ⋅ 4 1 9 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.56416598521635168028924232156 0.56416598521635168028924232156 0 . 5 6 4 1 6 5 9 8 5 2 1 6 3 5 1 6 8 0 2 8 9 2 4 2 3 2 1 5 6
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.56416598521635168028924232156 0.56416598521635168028924232156 0 . 5 6 4 1 6 5 9 8 5 2 1 6 3 5 1 6 8 0 2 8 9 2 4 2 3 2 1 5 6
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0818126452233845 1.0818126452233845 1 . 0 8 1 8 1 2 6 4 5 2 2 3 3 8 4 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 10.984044571686695 10.984044571686695 1 0 . 9 8 4 0 4 4 5 7 1 6 8 6 6 9 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 0 0 0
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.55865804320691607490803802232 0.55865804320691607490803802232 0 . 5 5 8 6 5 8 0 4 3 2 0 6 9 1 6 0 7 4 9 0 8 0 3 8 0 2 2 3 2
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 4 4 4
= 1 ⋅ 2 2 ⋅ 1 1\cdot2^{2}\cdot1 1 ⋅ 2 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 0.55865804320691607490803802232 0.55865804320691607490803802232 0 . 5 5 8 6 5 8 0 4 3 2 0 6 9 1 6 0 7 4 9 0 8 0 3 8 0 2 2 3 2
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
0.558658043 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.558658 ⋅ 1.000000 ⋅ 4 2 2 ≈ 0.558658043 \begin{aligned} 0.558658043 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.558658 \cdot 1.000000 \cdot 4}{2^2} \\ & \approx 0.558658043\end{aligned} 0 . 5 5 8 6 5 8 0 4 3 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 5 5 8 6 5 8 ⋅ 1 . 0 0 0 0 0 0 ⋅ 4 ≈ 0 . 5 5 8 6 5 8 0 4 3
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 0, 1, -5334, -150368]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 0, 1, -5334, -150368]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
30.2.a.a
q − q 2 + q 3 + q 4 − q 5 − q 6 − 4 q 7 − q 8 + q 9 + q 10 + q 12 + 2 q 13 + 4 q 14 − q 15 + q 16 + 6 q 17 − q 18 − 4 q 19 + O ( q 20 ) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} + 4 q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) q − q 2 + q 3 + q 4 − q 5 − q 6 − 4 q 7 − q 8 + q 9 + q 1 0 + q 1 2 + 2 q 1 3 + 4 q 1 4 − q 1 5 + q 1 6 + 6 q 1 7 − q 1 8 − 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 12, 12, 25], [1, 24, 0, 1], [97, 24, 96, 25], [42, 79, 77, 92], [1, 0, 24, 1], [31, 24, 30, 1], [21, 44, 8, 93], [15, 106, 14, 11], [112, 3, 117, 34]]
GL(2,Integers(120)).subgroup(gens)
magma: Gens := [[1, 12, 12, 25], [1, 24, 0, 1], [97, 24, 96, 25], [42, 79, 77, 92], [1, 0, 24, 1], [31, 24, 30, 1], [21, 44, 8, 93], [15, 106, 14, 11], [112, 3, 117, 34]];
sub<GL(2,Integers(120))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 120 = 2 3 ⋅ 3 ⋅ 5 120 = 2^{3} \cdot 3 \cdot 5 1 2 0 = 2 3 ⋅ 3 ⋅ 5 , index 384 384 3 8 4 , genus 5 5 5 , and generators
( 1 12 12 25 ) , ( 1 24 0 1 ) , ( 97 24 96 25 ) , ( 42 79 77 92 ) , ( 1 0 24 1 ) , ( 31 24 30 1 ) , ( 21 44 8 93 ) , ( 15 106 14 11 ) , ( 112 3 117 34 ) \left(\begin{array}{rr}
1 & 12 \\
12 & 25
\end{array}\right),\left(\begin{array}{rr}
1 & 24 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
97 & 24 \\
96 & 25
\end{array}\right),\left(\begin{array}{rr}
42 & 79 \\
77 & 92
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
24 & 1
\end{array}\right),\left(\begin{array}{rr}
31 & 24 \\
30 & 1
\end{array}\right),\left(\begin{array}{rr}
21 & 44 \\
8 & 93
\end{array}\right),\left(\begin{array}{rr}
15 & 106 \\
14 & 11
\end{array}\right),\left(\begin{array}{rr}
112 & 3 \\
117 & 34
\end{array}\right) ( 1 1 2 1 2 2 5 ) , ( 1 0 2 4 1 ) , ( 9 7 9 6 2 4 2 5 ) , ( 4 2 7 7 7 9 9 2 ) , ( 1 2 4 0 1 ) , ( 3 1 3 0 2 4 1 ) , ( 2 1 8 4 4 9 3 ) , ( 1 5 1 4 1 0 6 1 1 ) , ( 1 1 2 1 1 7 3 3 4 ) .
The torsion field K : = Q ( E [ 120 ] ) K:=\Q(E[120]) K : = Q ( E [ 1 2 0 ] ) is a degree-92160 92160 9 2 1 6 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 120 Z ) \GL_2(\Z/120\Z) GL 2 ( Z / 1 2 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 3, 4, 6 and 12.
Its isogeny class 30a
consists of 8 curves linked by isogenies of
degrees dividing 12.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 10 ) \Q(\sqrt{10}) Q ( 1 0 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
2.2.40.1-90.1-f11
2 2 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
2 2 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
Z / 4 Z \Z/4\Z Z / 4 Z
2.0.8.1-450.2-a8
2 2 2
Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
Z / 6 Z \Z/6\Z Z / 6 Z
2.0.3.1-300.1-a8
3 3 3
3.1.243.1
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
4 4 4
Q ( − 2 , − 5 ) \Q(\sqrt{-2}, \sqrt{-5}) Q ( − 2 , − 5 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
Q ( − 3 , 10 ) \Q(\sqrt{-3}, \sqrt{10}) Q ( − 3 , 1 0 )
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
4 4 4
Q ( − 3 , − 5 ) \Q(\sqrt{-3}, \sqrt{-5}) Q ( − 3 , − 5 )
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
4 4 4
Q ( − 2 , − 3 ) \Q(\sqrt{-2}, \sqrt{-3}) Q ( − 2 , − 3 )
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
6 6 6
6.0.177147.2
Z / 3 Z ⊕ Z / 6 Z \Z/3\Z \oplus \Z/6\Z Z / 3 Z ⊕ Z / 6 Z
not in database
6 6 6
6.2.3779136000.5
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
6 6 6
6.0.472392000.1
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
6 6 6
6.0.30233088.2
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
8 8 8
8.4.65536000000.4
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.5184000000.25
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
8.0.8493465600.20
Z / 24 Z \Z/24\Z Z / 2 4 Z
not in database
8 8 8
8.0.3317760000.8
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
12 12 1 2
deg 12
Z / 6 Z ⊕ Z / 6 Z \Z/6\Z \oplus \Z/6\Z Z / 6 Z ⊕ Z / 6 Z
not in database
12 12 1 2
deg 12
Z / 3 Z ⊕ Z / 12 Z \Z/3\Z \oplus \Z/12\Z Z / 3 Z ⊕ Z / 1 2 Z
not in database
12 12 1 2
12.0.8226356490141696.17
Z / 3 Z ⊕ Z / 12 Z \Z/3\Z \oplus \Z/12\Z Z / 3 Z ⊕ Z / 1 2 Z
not in database
12 12 1 2
deg 12
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 24 Z \Z/2\Z \oplus \Z/24\Z Z / 2 Z ⊕ Z / 2 4 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 24 Z \Z/24\Z Z / 2 4 Z
not in database
18 18 1 8
18.0.617673396283947000000000000.3
Z / 18 Z \Z/18\Z Z / 1 8 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ \lambda λ and μ \mu μ -invariants for primes p ≥ 5 p\ge
5 p ≥ 5 of good reduction are zero.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .