Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-403x+2895\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-403xz^2+2895z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-32670x+2012472\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-203/9, 26/27)$ | $5.3823674282267649736651001366$ | $\infty$ |
| $(15, 0)$ | $0$ | $2$ |
Integral points
\( \left(15, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 30976 \) | = | $2^{8} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $907039232$ | = | $2^{9} \cdot 11^{6} $ |
|
| j-invariant: | $j$ | = | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-2}]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.44840139575931849756607812264$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2704066260598257565278177574$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9029767420170889$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.863648075393878$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.3823674282267649736651001366$ |
|
| Real period: | $\Omega$ | ≈ | $1.5189701615537478723769761249$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.1756555219952396482889457682 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.175655522 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.518970 \cdot 5.382367 \cdot 4}{2^2} \\ & \approx 8.175655522\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 8640 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | -1 | 8 | 9 | 0 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 121 = 11^{2} \) |
| $11$ | additive | $62$ | \( 256 = 2^{8} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 30976h
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 256a1, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.4.247808.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.743424.1 | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.2230272.7 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.982540877824.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4974113193984.133 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.2210716975104.18 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.4.19896452775936.14 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $20$ | 20.0.1243811788377812389377718878208.2 | \(\Z/22\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | ss | add | ss | ord | ord | ss | ss | ss | ss | ord | ord | ss |
| $\lambda$-invariant(s) | - | 3 | 1,1 | 1,1 | - | 3,1 | 1 | 1 | 1,1 | 1,1 | 1,1 | 1,1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | 0,0 | 0,0 | - | 0,0 | 0 | 0 | 0,0 | 0,0 | 0,0 | 0,0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.