Properties

Label 30960bp
Number of curves $1$
Conductor $30960$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bp1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 30960bp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30960.x1 30960bp1 \([0, 0, 0, 1392, 70832]\) \(99897344/783675\) \(-2340041011200\) \([]\) \(61440\) \(1.0549\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 30960bp1 has rank \(0\).

Complex multiplication

The elliptic curves in class 30960bp do not have complex multiplication.

Modular form 30960.2.a.bp

sage: E.q_eigenform(10)
 
\(q - q^{5} + 4q^{7} - 3q^{11} + 5q^{13} + 7q^{17} + O(q^{20})\)  Toggle raw display