Label 30960.n
Number of curves $1$
Conductor $30960$
CM no
Rank $0$

Related objects


Learn more

Show commands for: SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()

Elliptic curves in class 30960.n

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30960.n1 30960bk1 \([0, 0, 0, -2416368, 1468298608]\) \(-522547125460258816/9506987907075\) \(-28387713778719436800\) \([]\) \(860160\) \(2.5287\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 30960.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 30960.n do not have complex multiplication.

Modular form 30960.2.a.n

sage: E.q_eigenform(10)
\(q - q^{5} + 5q^{11} + q^{13} - 5q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display