Show commands for:
SageMath
sage: E = EllipticCurve("bc1")
sage: E.isogeny_class()
Elliptic curves in class 30960.bc
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
30960.bc1 | 30960cd4 | [0, 0, 0, -120747, 16039514] | [4] | 147456 | |
30960.bc2 | 30960cd2 | [0, 0, 0, -12747, -138886] | [2, 2] | 73728 | |
30960.bc3 | 30960cd1 | [0, 0, 0, -9867, -376774] | [2] | 36864 | \(\Gamma_0(N)\)-optimal |
30960.bc4 | 30960cd3 | [0, 0, 0, 49173, -1092454] | [2] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 30960.bc have rank \(1\).
Complex multiplication
The elliptic curves in class 30960.bc do not have complex multiplication.Modular form 30960.2.a.bc
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.