Show commands for:
SageMath
sage: E = EllipticCurve("fy1")
sage: E.isogeny_class()
Elliptic curves in class 308550.fy
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
308550.fy1 | 308550fy2 | [1, 1, 1, -550613, -157481719] | [2] | 2949120 | |
308550.fy2 | 308550fy1 | [1, 1, 1, -36363, -2178219] | [2] | 1474560 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 308550.fy have rank \(0\).
Complex multiplication
The elliptic curves in class 308550.fy do not have complex multiplication.Modular form 308550.2.a.fy
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.