Properties

Label 306.b
Number of curves $6$
Conductor $306$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 306.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
306.b1 306c5 \([1, -1, 0, -249696, 48087270]\) \(2361739090258884097/5202\) \(3792258\) \([2]\) \(1024\) \(1.3964\)  
306.b2 306c3 \([1, -1, 0, -15606, 754272]\) \(576615941610337/27060804\) \(19727326116\) \([2, 2]\) \(512\) \(1.0498\)  
306.b3 306c6 \([1, -1, 0, -14796, 835434]\) \(-491411892194497/125563633938\) \(-91535889140802\) \([2]\) \(1024\) \(1.3964\)  
306.b4 306c2 \([1, -1, 0, -1026, 10692]\) \(163936758817/30338064\) \(22116448656\) \([2, 2]\) \(256\) \(0.70324\)  
306.b5 306c1 \([1, -1, 0, -306, -1836]\) \(4354703137/352512\) \(256981248\) \([2]\) \(128\) \(0.35666\) \(\Gamma_0(N)\)-optimal
306.b6 306c4 \([1, -1, 0, 2034, 60264]\) \(1276229915423/2927177028\) \(-2133912053412\) \([2]\) \(512\) \(1.0498\)  

Rank

sage: E.rank()
 

The elliptic curves in class 306.b have rank \(0\).

Complex multiplication

The elliptic curves in class 306.b do not have complex multiplication.

Modular form 306.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - q^{8} - 2 q^{10} + 4 q^{11} - 2 q^{13} + q^{16} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.