Learn more

Refine search


Results (30 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
305552.a1 305552.a \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $9.916323580$ $[0, 0, 0, 142805, 12623962]$ \(y^2=x^3+142805x+12623962\) 452.2.0.? $[(27791/7, 5698958/7)]$
305552.b1 305552.b \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $2.798155147$ $[0, 0, 0, 845, 5746]$ \(y^2=x^3+845x+5746\) 452.2.0.? $[(-1, 70)]$
305552.c1 305552.c \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1173029, -99053942]$ \(y^2=x^3+1173029x-99053942\) 104.2.0.? $[ ]$
305552.d1 305552.d \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1661664, 878530420]$ \(y^2=x^3+x^2-1661664x+878530420\) 11752.2.0.? $[ ]$
305552.e1 305552.e \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\Z/2\Z$ $1.018469819$ $[0, 1, 0, -5464, 136020]$ \(y^2=x^3+x^2-5464x+136020\) 2.3.0.a.1, 4.6.0.b.1, 104.12.0.?, 226.6.0.?, 452.24.0.?, $\ldots$ $[(4, 338)]$
305552.e2 305552.e \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\Z/2\Z$ $2.036939638$ $[0, 1, 0, 8056, 714676]$ \(y^2=x^3+x^2+8056x+714676\) 2.3.0.a.1, 4.6.0.a.1, 104.12.0.?, 452.12.0.?, 904.24.0.?, $\ldots$ $[(52, 1130)]$
305552.f1 305552.f \( 2^{4} \cdot 13^{2} \cdot 113 \) $2$ $\mathsf{trivial}$ $2.011614706$ $[0, 1, 0, -9832, 396852]$ \(y^2=x^3+x^2-9832x+396852\) 11752.2.0.? $[(14, 512), (1374/5, 19968/5)]$
305552.g1 305552.g \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $6.108655666$ $[0, -1, 0, -7440, -244544]$ \(y^2=x^3-x^2-7440x-244544\) 452.2.0.? $[(850, 24634)]$
305552.h1 305552.h \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $3.645946749$ $[0, -1, 0, 2616064, -1154367488]$ \(y^2=x^3-x^2+2616064x-1154367488\) 104.2.0.? $[(594, 24674)]$
305552.i1 305552.i \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $2.479506060$ $[0, -1, 0, 3302880, 6059601664]$ \(y^2=x^3-x^2+3302880x+6059601664\) 104.2.0.? $[(-4475/2, 248261/2)]$
305552.j1 305552.j \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $2.498641193$ $[0, -1, 0, -39007960, -131086264336]$ \(y^2=x^3-x^2-39007960x-131086264336\) 104.2.0.? $[(100460, 31777408)]$
305552.k1 305552.k \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $75.11123073$ $[0, -1, 0, -1257416, -542292752]$ \(y^2=x^3-x^2-1257416x-542292752\) 452.2.0.? $[(792259409106181122531581013526138/255478562345517, 22200129660145601001610823675443241316605546915170/255478562345517)]$
305552.l1 305552.l \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -94471, -6683274]$ \(y^2=x^3-94471x-6683274\) 2.3.0.a.1, 26.6.0.b.1, 452.6.0.?, 5876.12.0.? $[ ]$
305552.l2 305552.l \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -83486, -9282325]$ \(y^2=x^3-83486x-9282325\) 2.3.0.a.1, 52.6.0.c.1, 452.6.0.?, 2938.6.0.?, 5876.12.0.? $[ ]$
305552.m1 305552.m \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -5915, -171366]$ \(y^2=x^3-5915x-171366\) 2.3.0.a.1, 8.6.0.d.1, 226.6.0.?, 904.12.0.? $[ ]$
305552.m2 305552.m \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 845, -540462]$ \(y^2=x^3+845x-540462\) 2.3.0.a.1, 8.6.0.a.1, 452.6.0.?, 904.12.0.? $[ ]$
305552.n1 305552.n \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12004915, -16009815822]$ \(y^2=x^3-12004915x-16009815822\) 2.3.0.a.1, 26.6.0.b.1, 452.6.0.?, 5876.12.0.? $[ ]$
305552.n2 305552.n \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -756275, -245971726]$ \(y^2=x^3-756275x-245971726\) 2.3.0.a.1, 52.6.0.c.1, 226.6.0.?, 5876.12.0.? $[ ]$
305552.o1 305552.o \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -559, -3042]$ \(y^2=x^3-559x-3042\) 2.3.0.a.1, 26.6.0.b.1, 452.6.0.?, 5876.12.0.? $[ ]$
305552.o2 305552.o \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -494, -4225]$ \(y^2=x^3-494x-4225\) 2.3.0.a.1, 52.6.0.c.1, 452.6.0.?, 2938.6.0.?, 5876.12.0.? $[ ]$
305552.p1 305552.p \( 2^{4} \cdot 13^{2} \cdot 113 \) $2$ $\mathsf{trivial}$ $4.414136021$ $[0, 1, 0, -172696, -27803372]$ \(y^2=x^3+x^2-172696x-27803372\) 104.2.0.? $[(846, 20792), (15726/5, 1327976/5)]$
305552.q1 305552.q \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $2.209977937$ $[0, 1, 0, -1081656, 477727316]$ \(y^2=x^3+x^2-1081656x+477727316\) 104.2.0.? $[(1180/3, 496522/3)]$
305552.r1 305552.r \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\mathsf{trivial}$ $1.145720660$ $[0, 1, 0, -6400, 215476]$ \(y^2=x^3+x^2-6400x+215476\) 104.2.0.? $[(60, 226)]$
305552.s1 305552.s \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -29185680, -60967265644]$ \(y^2=x^3+x^2-29185680x-60967265644\) 104.2.0.? $[ ]$
305552.t1 305552.t \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\Z/2\Z$ $9.271930201$ $[0, -1, 0, -100104, -12000496]$ \(y^2=x^3-x^2-100104x-12000496\) 2.3.0.a.1, 104.6.0.?, 452.6.0.?, 11752.12.0.? $[(196330/21, 51953642/21)]$
305552.t2 305552.t \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\Z/2\Z$ $4.635965100$ $[0, -1, 0, -12224, 232400]$ \(y^2=x^3-x^2-12224x+232400\) 2.3.0.a.1, 104.6.0.?, 226.6.0.?, 11752.12.0.? $[(3448/3, 194012/3)]$
305552.u1 305552.u \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -826128, 300936128]$ \(y^2=x^3-x^2-826128x+300936128\) 3.4.0.a.1, 156.8.0.?, 2712.8.0.?, 11752.2.0.?, 35256.16.0.? $[ ]$
305552.u2 305552.u \( 2^{4} \cdot 13^{2} \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 52672, 1019264]$ \(y^2=x^3-x^2+52672x+1019264\) 3.4.0.a.1, 156.8.0.?, 2712.8.0.?, 11752.2.0.?, 35256.16.0.? $[ ]$
305552.v1 305552.v \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\Z/2\Z$ $16.40889984$ $[0, -1, 0, -121736, 16245488]$ \(y^2=x^3-x^2-121736x+16245488\) 2.3.0.a.1, 8.6.0.b.1, 452.6.0.?, 904.12.0.? $[(173813389/90, 2291171823863/90)]$
305552.v2 305552.v \( 2^{4} \cdot 13^{2} \cdot 113 \) $1$ $\Z/2\Z$ $8.204449922$ $[0, -1, 0, -13576, -194832]$ \(y^2=x^3-x^2-13576x-194832\) 2.3.0.a.1, 8.6.0.c.1, 226.6.0.?, 904.12.0.? $[(-34667/18, 852605/18)]$
  displayed columns for results