# Properties

 Label 30446.f Number of curves 2 Conductor 30446 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("30446.f1")

sage: E.isogeny_class()

## Elliptic curves in class 30446.f

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
30446.f1 30446d2 [1, 0, 1, -103927, -1282982] [] 321408
30446.f2 30446d1 [1, 0, 1, -67592, 6758038]  107136 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 30446.f have rank $$1$$.

## Modular form 30446.2.a.f

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} + q^{4} + 3q^{5} - q^{6} - q^{7} - q^{8} - 2q^{9} - 3q^{10} + 3q^{11} + q^{12} + q^{13} + q^{14} + 3q^{15} + q^{16} - 6q^{17} + 2q^{18} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 