Properties

Label 3042.k
Number of curves $2$
Conductor $3042$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 3042.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3042.k1 3042l2 \([1, -1, 1, -3503, 80695]\) \(-38575685889/16384\) \(-2018525184\) \([]\) \(2688\) \(0.74623\)  
3042.k2 3042l1 \([1, -1, 1, 7, -35]\) \(351/4\) \(-492804\) \([]\) \(384\) \(-0.22672\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3042.k have rank \(1\).

Complex multiplication

The elliptic curves in class 3042.k do not have complex multiplication.

Modular form 3042.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - 4 q^{7} + q^{8} - q^{10} + 4 q^{11} - 4 q^{14} + q^{16} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.