Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 3042.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3042.i1 | 3042m1 | \([1, -1, 1, -94334, -19502323]\) | \(-156116857/186624\) | \(-110979264025334016\) | \([]\) | \(39936\) | \(1.9645\) | \(\Gamma_0(N)\)-optimal |
3042.i2 | 3042m2 | \([1, -1, 1, 795451, 364884797]\) | \(93603087383/150994944\) | \(-89791815397090000896\) | \([3]\) | \(119808\) | \(2.5138\) |
Rank
sage: E.rank()
The elliptic curves in class 3042.i have rank \(1\).
Complex multiplication
The elliptic curves in class 3042.i do not have complex multiplication.Modular form 3042.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.