Properties

Label 3042.a
Number of curves $3$
Conductor $3042$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 3042.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3042.a1 3042f3 \([1, -1, 0, -698931, 225080181]\) \(-10730978619193/6656\) \(-23420758473216\) \([]\) \(30240\) \(1.8862\)  
3042.a2 3042f2 \([1, -1, 0, -6876, 439128]\) \(-10218313/17576\) \(-61845440343336\) \([]\) \(10080\) \(1.3369\)  
3042.a3 3042f1 \([1, -1, 0, 729, -12609]\) \(12167/26\) \(-91487337786\) \([]\) \(3360\) \(0.78755\) \(\Gamma_0(N)\)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3042.a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3042.a do not have complex multiplication.

Modular form 3042.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{5} + q^{7} - q^{8} + 3 q^{10} + 6 q^{11} - q^{14} + q^{16} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.