Properties

Label 30400.t
Number of curves $1$
Conductor $30400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 30400.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30400.t1 30400bs1 \([0, -1, 0, -833, 13537]\) \(-31250/19\) \(-38912000000\) \([]\) \(18432\) \(0.73411\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 30400.t1 has rank \(1\).

Complex multiplication

The elliptic curves in class 30400.t do not have complex multiplication.

Modular form 30400.2.a.t

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} - 2 q^{9} + 2 q^{11} + q^{13} + 5 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display