Properties

Label 303450cx2
Conductor $303450$
Discriminant $2.156\times 10^{19}$
j-invariant \( \frac{5203798902289}{57153600} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -2608376, 1605771398]) # or
 
sage: E = EllipticCurve("303450cx2")
 
gp: E = ellinit([1, 0, 1, -2608376, 1605771398]) \\ or
 
gp: E = ellinit("303450cx2")
 
magma: E := EllipticCurve([1, 0, 1, -2608376, 1605771398]); // or
 
magma: E := EllipticCurve("303450cx2");
 

\( y^2 + x y + y = x^{3} - 2608376 x + 1605771398 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(4257, -262229\right) \)
\(\hat{h}(P)\) ≈  $1.3985978319630512$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(\frac{4023}{4}, -\frac{4027}{8}\right) \), \( \left(857, -429\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-1863, 931\right) \), \( \left(-588, 54481\right) \), \( \left(-588, -53894\right) \), \( \left(738, 8734\right) \), \( \left(738, -9473\right) \), \( \left(857, -429\right) \), \( \left(1137, 9931\right) \), \( \left(1137, -11069\right) \), \( \left(1386, 24871\right) \), \( \left(1386, -26258\right) \), \( \left(4257, 257971\right) \), \( \left(4257, -262229\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 303450 \)  =  \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(21555452556225000000 \)  =  \(2^{6} \cdot 3^{6} \cdot 5^{8} \cdot 7^{2} \cdot 17^{6} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{5203798902289}{57153600} \)  =  \(2^{-6} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{3} \cdot 31^{3} \cdot 43^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1.39859783196\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.215891888105\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 384 \)  = \( 2\cdot( 2 \cdot 3 )\cdot2^{2}\cdot2\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(4\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 303450.2.a.cx

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} + q^{12} - 2q^{13} - q^{14} + q^{16} - q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 10616832
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 7.24670223942 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_{6} \) Non-split multiplicative 1 1 6 6
\(3\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(5\) \(4\) \( I_2^{*} \) Additive 1 2 8 2
\(7\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(17\) \(4\) \( I_0^{*} \) Additive 1 2 6 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $$ and has index 6.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 303450cx consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{85}) \) \(\Z/2\Z \times \Z/6\Z\) Not in database
$4$ \(\Q(\sqrt{-14}, \sqrt{170})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{30}, \sqrt{-51})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{51}, \sqrt{105})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$6$ 6.0.995297034375.1 \(\Z/2\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.