Show commands for:
SageMath
sage: E = EllipticCurve("k1")
sage: E.isogeny_class()
Elliptic curves in class 303450.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
303450.k1 | 303450k3 | [1, 1, 0, -36695925, 85545487125] | [2] | 28311552 | |
303450.k2 | 303450k4 | [1, 1, 0, -4905925, -2212830875] | [2] | 28311552 | |
303450.k3 | 303450k2 | [1, 1, 0, -2304925, 1321928125] | [2, 2] | 14155776 | |
303450.k4 | 303450k1 | [1, 1, 0, 7075, 61888125] | [2] | 7077888 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 303450.k have rank \(1\).
Complex multiplication
The elliptic curves in class 303450.k do not have complex multiplication.Modular form 303450.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.