Show commands for:
SageMath
sage: E = EllipticCurve("eo1")
sage: E.isogeny_class()
Elliptic curves in class 303450.eo
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
303450.eo1 | 303450eo3 | [1, 1, 1, -2698688, 1705259531] | [2] | 7077888 | |
303450.eo2 | 303450eo2 | [1, 1, 1, -169938, 26169531] | [2, 2] | 3538944 | |
303450.eo3 | 303450eo1 | [1, 1, 1, -25438, -996469] | [2] | 1769472 | \(\Gamma_0(N)\)-optimal |
303450.eo4 | 303450eo4 | [1, 1, 1, 46812, 88593531] | [2] | 7077888 |
Rank
sage: E.rank()
The elliptic curves in class 303450.eo have rank \(0\).
Complex multiplication
The elliptic curves in class 303450.eo do not have complex multiplication.Modular form 303450.2.a.eo
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.