Minimal Weierstrass equation
\(y^2+xy+y=x^3-7626x+1001273\)
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 3025 \) | = | \(5^{2} \cdot 11^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-405272259390625 \) | = | \(-1 \cdot 5^{6} \cdot 11^{10} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -121 \) | = | \(-1 \cdot 11^{2}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.45606612681032076055533948800\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 1 \) = \( 1\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 9240 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 0.45606612681032076055533948800234390299 \)
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(5\) | \(1\) | \(I_0^{*}\) | Additive | 1 | 2 | 6 | 0 |
\(11\) | \(1\) | \(II^{*}\) | Additive | -1 | 2 | 10 | 0 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X3.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 3 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 0 & 1 \\ 3 & 1 \end{array}\right)$ and has index 2.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(11\) | B.10.4 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ordinary | ordinary | add | ordinary | add | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ss | ordinary |
$\lambda$-invariant(s) | ? | 2 | - | 0 | - | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
$\mu$-invariant(s) | ? | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
11.
Its isogeny class 3025.e
consists of 2 curves linked by isogenies of
degree 11.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.484.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.937024.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$8$ | 8.2.2421502441875.2 | \(\Z/3\Z\) | Not in database |
$10$ | 10.10.669871503125.1 | \(\Z/11\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.