# Properties

 Label 3024.p3 Conductor $3024$ Discriminant $-396361728$ j-invariant $$\frac{4492125}{3584}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 165, -502])

gp: E = ellinit([0, 0, 0, 165, -502])

magma: E := EllipticCurve([0, 0, 0, 165, -502]);

## Simplified equation

 $$y^2=x^3+165x-502$$ y^2=x^3+165x-502 (homogenize, simplify) $$y^2z=x^3+165xz^2-502z^3$$ y^2z=x^3+165xz^2-502z^3 (dehomogenize, simplify) $$y^2=x^3+165x-502$$ y^2=x^3+165x-502 (homogenize, minimize)

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$3024$$ = $2^{4} \cdot 3^{3} \cdot 7$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-396361728$ = $-1 \cdot 2^{21} \cdot 3^{3} \cdot 7$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{4492125}{3584}$$ = $2^{-9} \cdot 3^{3} \cdot 5^{3} \cdot 7^{-1} \cdot 11^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.33772489392221859378867129983\dots$ Stable Faltings height: $-0.63007535880475413847737213086\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.93694636751196903439418010379\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $2\cdot1\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.8738927350239380687883602076$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{7} + 5 q^{13} + 3 q^{17} - 2 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 864 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{13}^{*}$ Additive -1 4 21 9
$3$ $1$ $II$ Additive 1 3 3 0
$7$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 9.12.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add ss nonsplit ss ord ord ord ord ord ord ord ord ord ord - - 0,0 0 0,0 0 0 0 0 0 0 0 0 2 0 - - 0,0 0 0,0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3 and 9.
Its isogeny class 3024.p consists of 3 curves linked by isogenies of degrees dividing 9.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-1})$$ $$\Z/3\Z$$ 2.0.4.1-71442.1-e3 $3$ 3.1.1512.1 $$\Z/2\Z$$ Not in database $6$ 6.0.384072192.1 $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $6$ 6.2.336063168.1 $$\Z/3\Z$$ Not in database $6$ 6.0.1008189504.1 $$\Z/9\Z$$ Not in database $6$ 6.0.36578304.1 $$\Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \oplus \Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/9\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $18$ 18.2.617026473908514065557877233287168.1 $$\Z/6\Z$$ Not in database $18$ 18.0.149937433159768917930564167688781824.2 $$\Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.