Properties

Label 302330o
Number of curves $1$
Conductor $302330$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 302330o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
302330.o1 302330o1 \([1, 1, 0, -8453, 345437]\) \(-236513641/49360\) \(-13942978290640\) \([]\) \(934080\) \(1.2440\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 302330o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 302330o do not have complex multiplication.

Modular form 302330.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - q^{5} - 2 q^{6} - q^{8} + q^{9} + q^{10} + 2 q^{11} + 2 q^{12} - 7 q^{13} - 2 q^{15} + q^{16} + 3 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display