Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-x^2-13x-23\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-x^2z-13xz^2-23z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-1080x-19980\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 300 \) | = | $2^{2} \cdot 3 \cdot 5^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-172800$ | = | $-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{2} $ | 
     | 
        
| j-invariant: | $j$ | = | \( -\frac{40960}{27} \) | = | $-1 \cdot 2^{13} \cdot 3^{-3} \cdot 5$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.29408928340257600737892216666$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0244270558482229427572034698$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.029908311854535$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5318268653311717$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 0$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | 
     | 
| Real period: | $\Omega$ | ≈ | $1.2133770572523034803352883356$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | 
     | 
        
| Special value: | $ L(E,1)$ | ≈ | $1.2133770572523034803352883356 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | 
     | 
        
BSD formula
$$\begin{aligned} 1.213377057 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.213377 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 1.213377057\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 36 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 | 
| $3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 | 
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 30.48.0-6.c.1.2, level \( 30 = 2 \cdot 3 \cdot 5 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 21 & 16 \\ 25 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 6 \\ 24 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 6 \\ 18 & 29 \end{array}\right),\left(\begin{array}{rr} 2 & 5 \\ 1 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[30])$ is a degree-$2880$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/30\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 75 = 3 \cdot 5^{2} \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 100 = 2^{2} \cdot 5^{2} \) | 
| $5$ | additive | $10$ | \( 12 = 2^{2} \cdot 3 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 300a
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/3\Z\) | 2.2.5.1-3600.1-a2 | 
| $3$ | 3.1.300.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.0.270000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $6$ | 6.0.1350000.1 | \(\Z/6\Z\) | not in database | 
| $6$ | 6.2.450000.1 | \(\Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | 12.0.1822500000000.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database | 
| $18$ | 18.6.25736391511831125000000000000.2 | \(\Z/9\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord | ord | 
| $\lambda$-invariant(s) | - | 0 | - | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 2 | 0 | 
| $\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.