Properties

Label 30030.p2
Conductor 30030
Discriminant 5565686539253841000000
j-invariant \( \frac{36134533748915083453404889}{5565686539253841000000} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -6887574, -5960607128]); // or
magma: E := EllipticCurve("30030r6");
sage: E = EllipticCurve([1, 0, 1, -6887574, -5960607128]) # or
sage: E = EllipticCurve("30030r6")
gp: E = ellinit([1, 0, 1, -6887574, -5960607128]) \\ or
gp: E = ellinit("30030r6")

\( y^2 + x y + y = x^{3} - 6887574 x - 5960607128 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

\(P\) =  \( \left(-1894, 18009\right) \)
\(\hat{h}(P)\) ≈  0.673265895515

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(-1019, 509\right) \), \( \left(2981, -1491\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

\( \left(-1894, 18009\right) \), \( \left(-1712, 29384\right) \), \( \left(-1075, 14733\right) \), \( \left(-1019, 509\right) \), \( \left(2981, -1491\right) \), \( \left(3293, 82437\right) \), \( \left(16670, 2115741\right) \), \( \left(66356, 17046384\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 30030 \)  =  \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(5565686539253841000000 \)  =  \(2^{6} \cdot 3^{4} \cdot 5^{6} \cdot 7^{6} \cdot 11^{2} \cdot 13^{6} \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( \frac{36134533748915083453404889}{5565686539253841000000} \)  =  \(2^{-6} \cdot 3^{-4} \cdot 5^{-6} \cdot 7^{-6} \cdot 11^{-2} \cdot 13^{-6} \cdot 103^{3} \cdot 1753^{3} \cdot 1831^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(1\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(0.673265895515\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(0.0941580839688\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 1152 \)  = \( 2\cdot2^{2}\cdot2\cdot( 2 \cdot 3 )\cdot2\cdot( 2 \cdot 3 ) \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(4\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 30030.2.a.p

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + q^{13} - q^{14} - q^{15} + q^{16} - 6q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
sage: E.modular_degree()
Modular degree: 2985984
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L'(E,1) \) ≈ \( 4.56432672407 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_{6} \) Non-split multiplicative 1 1 6 6
\(3\) \(4\) \( I_{4} \) Split multiplicative -1 1 4 4
\(5\) \(2\) \( I_{6} \) Non-split multiplicative 1 1 6 6
\(7\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(11\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(13\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs
\(3\) B.1.2

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split nonsplit split split split ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 2 4 1 2 2 2 1 1 1,1 1 1 1 1 1 1,1
$\mu$-invariant(s) 1 1 0 0 0 0 0 0 0,0 0 0 0 0 0 0,0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 30030.p consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-3}) \) \(\Z/2\Z \times \Z/6\Z\) Not in database
3 3.1.29403.1 \(\Z/2\Z \times \Z/6\Z\) Not in database
4 \(\Q(\sqrt{-10}, \sqrt{77})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
\(\Q(\sqrt{10}, \sqrt{13})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
\(\Q(\sqrt{-13}, \sqrt{-77})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
6 6.0.2593609227.2 \(\Z/6\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.