Minimal Weierstrass equation
\( y^2 + x y + y = x^{3} - 14 x - 64 \)
Mordell-Weil group structure
Torsion generators
\( \left(5, -3\right) \)
Integral points
\( \left(5, -3\right) \)
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 30 \) | = | \(2 \cdot 3 \cdot 5\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(-1536000 \) | = | \(-1 \cdot 2^{12} \cdot 3 \cdot 5^{3} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( -\frac{273359449}{1536000} \) | = | \(-1 \cdot 2^{-12} \cdot 3^{-1} \cdot 5^{-3} \cdot 11^{3} \cdot 59^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(0\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(1\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(1.11731608641\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 2 \) = \( 2\cdot1\cdot1 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(2\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 30.2.a.a
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 6 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 0.558658043207 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \( I_{12} \) | Non-split multiplicative | 1 | 1 | 12 | 12 |
\(3\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
\(5\) | \(1\) | \( I_{3} \) | Non-split multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13c.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
\(3\) | B.1.2 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 |
---|---|---|---|
Reduction type | nonsplit | split | nonsplit |
$\lambda$-invariant(s) | 0 | 1 | 0 |
$\mu$-invariant(s) | 0 | 1 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class 30.a
consists of 8 curves linked by isogenies of
degrees dividing 12.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | 2.2.5.1-180.1-a1 |
\(\Q(\sqrt{-15}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database | |
\(\Q(\sqrt{-3}) \) | \(\Z/12\Z\) | 2.0.3.1-300.1-a1 | |
3 | 3.1.243.1 | \(\Z/6\Z\) | Not in database |
4 | \(\Q(\sqrt{-3}, \sqrt{5})\) | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
6 | 6.2.7381125.1 | \(\Z/12\Z\) | Not in database |
6.0.22143375.1 | \(\Z/2\Z \times \Z/6\Z\) | Not in database | |
6.0.177147.2 | \(\Z/3\Z \times \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.