Properties

Label 298816u2
Conductor $298816$
Discriminant $1.230\times 10^{18}$
j-invariant \( \frac{41647175116728660507393}{4693358285056} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -46216876, 120934148400])
 
gp: E = ellinit([0, 0, 0, -46216876, 120934148400])
 
magma: E := EllipticCurve([0, 0, 0, -46216876, 120934148400]);
 

\(y^2=x^3-46216876x+120934148400\)  Toggle raw display

Mordell-Weil group structure

$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(3917, 861\right)\)  Toggle raw display\(\left(\frac{15129}{4}, \frac{123165}{8}\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $4.3948712681460959121007440042$$5.2716476612995518120503166510$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(3924, 0\right) \), \( \left(3926, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-7850, 0\right) \), \((3917,\pm 861)\), \( \left(3924, 0\right) \), \( \left(3926, 0\right) \), \((7288,\pm 413772)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 298816 \)  =  $2^{6} \cdot 7 \cdot 23 \cdot 29$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $1230335714277720064 $  =  $2^{26} \cdot 7^{2} \cdot 23^{2} \cdot 29^{4} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{41647175116728660507393}{4693358285056} \)  =  $2^{-8} \cdot 3^{3} \cdot 7^{-2} \cdot 23^{-2} \cdot 29^{-4} \cdot 2971^{3} \cdot 3889^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.8953685030881814162049330819\dots$
Stable Faltings height: $1.8556477322482634520790848997\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $2$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $22.915496336746877778230631377\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.21109378757716824299943509437\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2^{2}\cdot2\cdot2\cdot2 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $4$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (rounded)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L^{(2)}(E,1)/2! $ ≈ $ 9.6746378318692448975460736537657549558 $

Modular invariants

Modular form 298816.2.a.u

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - 2q^{5} - q^{7} - 3q^{9} - 4q^{11} - 6q^{13} + 6q^{17} - 4q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 14745600
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{16}^{*}$ Additive 1 6 26 8
$7$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$23$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$29$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 8.12.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 298816u consists of 2 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$4$ \(\Q(\sqrt{2}, \sqrt{23})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-2}, \sqrt{-7})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-14}, \sqrt{-46})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ 16.0.1938951158551208427022974976.1 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.