Properties

Label 298816bc
Number of curves $4$
Conductor $298816$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 298816bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
298816.bc4 298816bc1 \([0, 0, 0, -2881196, -1899702576]\) \(-10090256344188054273/107965577101312\) \(-28302528243646332928\) \([2]\) \(7372800\) \(2.5488\) \(\Gamma_0(N)\)-optimal
298816.bc3 298816bc2 \([0, 0, 0, -46216876, -120934148400]\) \(41647175116728660507393/4693358285056\) \(1230335714277720064\) \([2, 2]\) \(14745600\) \(2.8954\)  
298816.bc2 298816bc3 \([0, 0, 0, -46334636, -120286892336]\) \(41966336340198080824833/442001722607124848\) \(115868099571122136154112\) \([2]\) \(29491200\) \(3.2419\)  
298816.bc1 298816bc4 \([0, 0, 0, -739469996, -7739785937200]\) \(170586815436843383543017473/2166416\) \(567912955904\) \([2]\) \(29491200\) \(3.2419\)  

Rank

sage: E.rank()
 

The elliptic curves in class 298816bc have rank \(1\).

Complex multiplication

The elliptic curves in class 298816bc do not have complex multiplication.

Modular form 298816.2.a.bc

sage: E.q_eigenform(10)
 
\(q - 2q^{5} + q^{7} - 3q^{9} + 4q^{11} - 6q^{13} + 6q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.