Properties

Label 297.b
Number of curves $1$
Conductor $297$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 297.b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 297.b do not have complex multiplication.

Modular form 297.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 2 q^{5} - 5 q^{7} + 3 q^{8} - 2 q^{10} - q^{11} - 2 q^{13} + 5 q^{14} - q^{16} - 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 297.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
297.b1 297b1 \([1, -1, 1, 1, 0]\) \(9261/11\) \(-297\) \([]\) \(12\) \(-0.83928\) \(\Gamma_0(N)\)-optimal