Properties

Label 29645p1
Conductor $29645$
Discriminant $-75955677875$
j-invariant \( -\frac{110592}{125} \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 1, -847, -16305])
 
gp: E = ellinit([0, 0, 1, -847, -16305])
 
magma: E := EllipticCurve([0, 0, 1, -847, -16305]);
 

\(y^2+y=x^3-847x-16305\)  Toggle raw display

Mordell-Weil group structure

trivial

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

None

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 29645 \)  =  $5 \cdot 7^{2} \cdot 11^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-75955677875 $  =  $-1 \cdot 5^{3} \cdot 7^{3} \cdot 11^{6} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{110592}{125} \)  =  $-1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{-3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $0.78218681566655841261231045051\dots$
Stable Faltings height: $-0.90323835799645518569499952433\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $0$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.42382980324586212206985680773\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 6 $  = $ 3\cdot2\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $1$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L(E,1) $ ≈ $ 2.5429788194751727324191408464078314015 $

Modular invariants

Modular form 29645.2.a.o

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + 2q^{2} - 3q^{3} + 2q^{4} + q^{5} - 6q^{6} + 6q^{9} + 2q^{10} - 6q^{12} + 3q^{13} - 3q^{15} - 4q^{16} - 3q^{17} + 12q^{18} + 6q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 68640
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$5$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$7$ $2$ $III$ Additive -1 2 3 0
$11$ $1$ $I_0^{*}$ Additive -1 2 6 0

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3Nn 3.3.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All $p$-adic regulators are identically $1$ since the rank is $0$.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ss split add add ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary
$\lambda$-invariant(s) 2,7 4,2 1 - - 0 0 0 0 2 0 0,0 0 0 0
$\mu$-invariant(s) 0,0 0,0 0 - - 0 0 0 0 0 0 0,0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has no rational isogenies. Its isogeny class 29645p consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.140.1 \(\Z/2\Z\) Not in database
$6$ 6.0.686000.1 \(\Z/2\Z \times \Z/2\Z\) Not in database
$8$ 8.2.3767105332683.1 \(\Z/3\Z\) Not in database
$12$ Deg 12 \(\Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/3\Z \times \Z/3\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.