Properties

Label 29645.o
Number of curves $1$
Conductor $29645$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 29645.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29645.o1 29645p1 \([0, 0, 1, -847, -16305]\) \(-110592/125\) \(-75955677875\) \([]\) \(68640\) \(0.78219\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 29645.o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 29645.o do not have complex multiplication.

Modular form 29645.2.a.o

sage: E.q_eigenform(10)
 
\(q + 2q^{2} - 3q^{3} + 2q^{4} + q^{5} - 6q^{6} + 6q^{9} + 2q^{10} - 6q^{12} + 3q^{13} - 3q^{15} - 4q^{16} - 3q^{17} + 12q^{18} + 6q^{19} + O(q^{20})\)  Toggle raw display