Properties

Label 29645.n
Number of curves $1$
Conductor $29645$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 29645.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29645.n1 29645f1 \([1, -1, 0, -69295, 15239846]\) \(-1459161/3125\) \(-78809712471153125\) \([]\) \(435600\) \(1.9311\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 29645.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 29645.n do not have complex multiplication.

Modular form 29645.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} + 3q^{3} - q^{4} - q^{5} + 3q^{6} - 3q^{8} + 6q^{9} - q^{10} - 3q^{12} + 4q^{13} - 3q^{15} - q^{16} + 6q^{18} + 4q^{19} + O(q^{20})\)  Toggle raw display