Properties

Label 29645.d
Number of curves $1$
Conductor $29645$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 29645.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29645.d1 29645l1 \([1, -1, 1, 28533, 3288464]\) \(2079/5\) \(-6178681457738405\) \([]\) \(121968\) \(1.7139\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 29645.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 29645.d do not have complex multiplication.

Modular form 29645.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{5} + 3q^{8} - 3q^{9} - q^{10} - q^{16} + 6q^{17} + 3q^{18} + 2q^{19} + O(q^{20})\)  Toggle raw display