## Results (25 matches)

displayed columns for results
Label Class Conductor Rank Torsion CM Weierstrass equation
2960.a1 2960.a $$2^{4} \cdot 5 \cdot 37$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-219448x-39364772$$
2960.b1 2960.b $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+x^2+148$$
2960.c1 2960.c $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+x^2+200x+1620$$
2960.d1 2960.d $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2-12021x+511321$$
2960.d2 2960.d $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2-181x+425$$
2960.e1 2960.e $$2^{4} \cdot 5 \cdot 37$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-x^2-2501x-47315$$
2960.f1 2960.f $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2-1665x+22237$$
2960.g1 2960.g $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-6323x+193522$$
2960.g2 2960.g $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-403x+2898$$
2960.g3 2960.g $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-83x-238$$
2960.g4 2960.g $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3+397x+12978$$
2960.h1 2960.h $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+x^2-45x-25$$
2960.i1 2960.i $$2^{4} \cdot 5 \cdot 37$$ $0$ $\mathsf{trivial}$ $$y^2=x^3+x^2-85x-317$$
2960.j1 2960.j $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2-856x-9360$$
2960.j2 2960.j $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2-296x-21904$$
2960.j3 2960.j $$2^{4} \cdot 5 \cdot 37$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2+2664x+589040$$
2960.k1 2960.k $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-56x+176$$
2960.k2 2960.k $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2+24x+560$$
2960.l1 2960.l $$2^{4} \cdot 5 \cdot 37$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-60x-160$$
2960.l2 2960.l $$2^{4} \cdot 5 \cdot 37$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-40x-288$$
2960.m1 2960.m $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-84400x+9465792$$
2960.m2 2960.m $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-84080x+9540800$$
2960.m3 2960.m $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-1200x+9152$$
2960.m4 2960.m $$2^{4} \cdot 5 \cdot 37$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2+3920x+62400$$
2960.n1 2960.n $$2^{4} \cdot 5 \cdot 37$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-28x-52$$
displayed columns for results