Properties

Label 29400u
Number of curves $2$
Conductor $29400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("u1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 29400u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
29400.b1 29400u1 [0, -1, 0, -21408, 1210812] [2] 92160 \(\Gamma_0(N)\)-optimal
29400.b2 29400u2 [0, -1, 0, -14408, 2008812] [2] 184320  

Rank

sage: E.rank()
 

The elliptic curves in class 29400u have rank \(0\).

Complex multiplication

The elliptic curves in class 29400u do not have complex multiplication.

Modular form 29400.2.a.u

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} - 6q^{11} + 2q^{13} - 4q^{17} + 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.