Properties

Label 29400co
Number of curves $2$
Conductor $29400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("co1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 29400co

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
29400.ba1 29400co1 [0, -1, 0, -1283, 13812] [2] 18432 \(\Gamma_0(N)\)-optimal
29400.ba2 29400co2 [0, -1, 0, 3092, 83812] [2] 36864  

Rank

sage: E.rank()
 

The elliptic curves in class 29400co have rank \(1\).

Complex multiplication

The elliptic curves in class 29400co do not have complex multiplication.

Modular form 29400.2.a.co

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} - 2q^{13} - 2q^{17} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.