Properties

Label 29400.t
Number of curves $1$
Conductor $29400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 29400.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29400.t1 29400g1 \([0, -1, 0, 209592, -1164079188]\) \(649381163998/373669453125\) \(-585913702500000000000\) \([]\) \(1128960\) \(2.6640\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 29400.t1 has rank \(0\).

Complex multiplication

The elliptic curves in class 29400.t do not have complex multiplication.

Modular form 29400.2.a.t

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - q^{11} - 5 q^{13} - 4 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display