Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 294.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
294.g1 | 294c3 | [1, 0, 0, -65857, -6510547] | [2] | 768 | |
294.g2 | 294c5 | [1, 0, 0, -44787, 3609423] | [2] | 1536 | |
294.g3 | 294c4 | [1, 0, 0, -5097, -49995] | [2, 2] | 768 | |
294.g4 | 294c2 | [1, 0, 0, -4117, -101935] | [2, 2] | 384 | |
294.g5 | 294c1 | [1, 0, 0, -197, -2367] | [4] | 192 | \(\Gamma_0(N)\)-optimal |
294.g6 | 294c6 | [1, 0, 0, 18913, -381333] | [2] | 1536 |
Rank
sage: E.rank()
The elliptic curves in class 294.g have rank \(0\).
Complex multiplication
The elliptic curves in class 294.g do not have complex multiplication.Modular form 294.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.