Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
292410.a1 |
292410a1 |
292410.a |
292410a |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$228096000$ |
$3.796543$ |
$-102104486768999621923569/39617584000000$ |
$1.08699$ |
$5.96233$ |
$[1, -1, 0, -1520930070, 22830707063796]$ |
\(y^2+xy=x^3-x^2-1520930070x+22830707063796\) |
38.2.0.a.1 |
$[ ]$ |
292410.b1 |
292410b1 |
292410.b |
292410b |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$7.327643693$ |
$1$ |
|
$0$ |
$1458000$ |
$1.500902$ |
$-8120601/12800$ |
$0.99343$ |
$3.29598$ |
$[1, -1, 0, -13605, -1175275]$ |
\(y^2+xy=x^3-x^2-13605x-1175275\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.1, 456.16.0.? |
$[(3095/2, 166815/2)]$ |
292410.b2 |
292410b2 |
292410.b |
292410b |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 5^{6} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$2.442547897$ |
$1$ |
|
$2$ |
$4374000$ |
$2.050209$ |
$62710839/125000$ |
$1.00087$ |
$3.77411$ |
$[1, -1, 0, 116355, 23855021]$ |
\(y^2+xy=x^3-x^2+116355x+23855021\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.2, 456.16.0.? |
$[(193, 7216)]$ |
292410.c1 |
292410c1 |
292410.c |
292410c |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{22} \cdot 3^{6} \cdot 5^{2} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$11.10540461$ |
$1$ |
|
$2$ |
$33707520$ |
$3.027145$ |
$-723908897739/104857600$ |
$0.99139$ |
$4.81673$ |
$[1, -1, 0, -11547555, -16885578475]$ |
\(y^2+xy=x^3-x^2-11547555x-16885578475\) |
38.2.0.a.1 |
$[(146765, 56136805)]$ |
292410.d1 |
292410d2 |
292410.d |
292410d |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 5^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7464960$ |
$2.420650$ |
$-225866529/1187500$ |
$0.90194$ |
$4.16311$ |
$[1, -1, 0, -370995, 276302321]$ |
\(y^2+xy=x^3-x^2-370995x+276302321\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? |
$[ ]$ |
292410.d2 |
292410d1 |
292410.d |
292410d |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$1.871346$ |
$1934296191/10974400$ |
$0.91662$ |
$3.62463$ |
$[1, -1, 0, 40545, -9333875]$ |
\(y^2+xy=x^3-x^2+40545x-9333875\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? |
$[ ]$ |
292410.e1 |
292410e1 |
292410.e |
292410e |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{5} \cdot 19^{14} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$52531200$ |
$3.392281$ |
$1406800924750987551/849178152050000$ |
$1.04945$ |
$5.07305$ |
$[1, -1, 0, 36461835, -17594438075]$ |
\(y^2+xy=x^3-x^2+36461835x-17594438075\) |
20.2.0.a.1 |
$[ ]$ |
292410.f1 |
292410f2 |
292410.f |
292410f |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1458000$ |
$1.566936$ |
$-1058841/250$ |
$1.05827$ |
$3.40600$ |
$[1, -1, 0, -29850, 2362886]$ |
\(y^2+xy=x^3-x^2-29850x+2362886\) |
3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? |
$[ ]$ |
292410.f2 |
292410f1 |
292410.f |
292410f |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$486000$ |
$1.017630$ |
$59319/40$ |
$0.93827$ |
$2.80067$ |
$[1, -1, 0, 2640, -21880]$ |
\(y^2+xy=x^3-x^2+2640x-21880\) |
3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? |
$[ ]$ |
292410.g1 |
292410g2 |
292410.g |
292410g |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 5^{3} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$384912$ |
$0.924007$ |
$-1606362201/1000$ |
$0.89636$ |
$3.02507$ |
$[1, -1, 0, -6765, 215981]$ |
\(y^2+xy=x^3-x^2-6765x+215981\) |
3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? |
$[ ]$ |
292410.g2 |
292410g1 |
292410.g |
292410g |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5 \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$128304$ |
$0.374701$ |
$175959/2560$ |
$0.87478$ |
$2.20425$ |
$[1, -1, 0, 75, 1205]$ |
\(y^2+xy=x^3-x^2+75x+1205\) |
3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? |
$[ ]$ |
292410.h1 |
292410h1 |
292410.h |
292410h |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{16} \cdot 3^{10} \cdot 5^{2} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$66355200$ |
$3.489025$ |
$-365378675988681/4056840601600$ |
$1.01117$ |
$5.17958$ |
$[1, -1, 0, -20937165, 165678330725]$ |
\(y^2+xy=x^3-x^2-20937165x+165678330725\) |
38.2.0.a.1 |
$[ ]$ |
292410.i1 |
292410i2 |
292410.i |
292410i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 5^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1140$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2985984$ |
$1.900761$ |
$-2146689/2000$ |
$0.96139$ |
$3.68577$ |
$[1, -1, 0, -78585, 13718141]$ |
\(y^2+xy=x^3-x^2-78585x+13718141\) |
3.4.0.a.1, 20.2.0.a.1, 57.8.0-3.a.1.2, 60.8.0.a.1, 1140.16.0.? |
$[ ]$ |
292410.i2 |
292410i1 |
292410.i |
292410i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1140$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.351454$ |
$15166431/20480$ |
$0.98011$ |
$3.08944$ |
$[1, -1, 0, 8055, -323315]$ |
\(y^2+xy=x^3-x^2+8055x-323315\) |
3.4.0.a.1, 20.2.0.a.1, 57.8.0-3.a.1.1, 60.8.0.a.1, 1140.16.0.? |
$[ ]$ |
292410.j1 |
292410j1 |
292410.j |
292410j |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.924765539$ |
$1$ |
|
$2$ |
$1152000$ |
$1.448608$ |
$175185981/640000$ |
$0.94575$ |
$3.21557$ |
$[1, -1, 0, 8625, 708461]$ |
\(y^2+xy=x^3-x^2+8625x+708461\) |
38.2.0.a.1 |
$[(62, 1185)]$ |
292410.k1 |
292410k2 |
292410.k |
292410k |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{3} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9331200$ |
$2.498371$ |
$-4092809481/27436000$ |
$1.06537$ |
$4.23630$ |
$[1, -1, 0, -468465, 437907581]$ |
\(y^2+xy=x^3-x^2-468465x+437907581\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 760.2.0.?, 2280.16.0.? |
$[ ]$ |
292410.k2 |
292410k1 |
292410.k |
292410k |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3110400$ |
$1.949066$ |
$437245479/3112960$ |
$0.91688$ |
$3.70091$ |
$[1, -1, 0, 51375, -15080995]$ |
\(y^2+xy=x^3-x^2+51375x-15080995\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 760.2.0.?, 2280.16.0.? |
$[ ]$ |
292410.l1 |
292410l2 |
292410.l |
292410l |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 5^{3} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$570$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$326592$ |
$0.823576$ |
$2520369/500$ |
$0.80924$ |
$2.68651$ |
$[1, -1, 0, -1635, 21041]$ |
\(y^2+xy=x^3-x^2-1635x+21041\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.2, 570.16.0.? |
$[ ]$ |
292410.l2 |
292410l1 |
292410.l |
292410l |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$570$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$108864$ |
$0.274270$ |
$459240849/320$ |
$0.99957$ |
$2.40177$ |
$[1, -1, 0, -495, -4115]$ |
\(y^2+xy=x^3-x^2-495x-4115\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.1, 570.16.0.? |
$[ ]$ |
292410.m1 |
292410m1 |
292410.m |
292410m |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{2} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$7.854194006$ |
$1$ |
|
$0$ |
$136080$ |
$0.400961$ |
$-199565721/200$ |
$0.87897$ |
$2.51026$ |
$[1, -1, 0, -780, -8200]$ |
\(y^2+xy=x^3-x^2-780x-8200\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.1, 456.16.0.? |
$[(4745/8, 278415/8)]$ |
292410.m2 |
292410m2 |
292410.m |
292410m |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{6} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$2.618064668$ |
$1$ |
|
$2$ |
$408240$ |
$0.950267$ |
$4170519/31250$ |
$0.89305$ |
$2.74904$ |
$[1, -1, 0, 930, -37954]$ |
\(y^2+xy=x^3-x^2+930x-37954\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.2, 456.16.0.? |
$[(643, 15991)]$ |
292410.n1 |
292410n1 |
292410.n |
292410n |
$2$ |
$7$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.1, 7.8.0.1 |
7B |
$9576$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$169344$ |
$0.500751$ |
$-9309229569/3200$ |
$0.91597$ |
$2.64090$ |
$[1, -1, 0, -1350, -18764]$ |
\(y^2+xy=x^3-x^2-1350x-18764\) |
7.8.0.a.1, 8.2.0.a.1, 56.16.0.a.1, 133.16.0.?, 1064.32.0.?, $\ldots$ |
$[ ]$ |
292410.n2 |
292410n2 |
292410.n |
292410n |
$2$ |
$7$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{14} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.1, 7.8.0.1 |
7B |
$9576$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$1185408$ |
$1.473707$ |
$1411546049631/12207031250$ |
$1.01133$ |
$3.24919$ |
$[1, -1, 0, 7200, 876250]$ |
\(y^2+xy=x^3-x^2+7200x+876250\) |
7.8.0.a.1, 8.2.0.a.1, 56.16.0.a.1, 133.16.0.?, 1064.32.0.?, $\ldots$ |
$[ ]$ |
292410.o1 |
292410o1 |
292410.o |
292410o |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$7290000$ |
$2.196625$ |
$-115330920751809/4096000$ |
$1.05706$ |
$4.32547$ |
$[1, -1, 0, -1583955, -766922699]$ |
\(y^2+xy=x^3-x^2-1583955x-766922699\) |
3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? |
$[ ]$ |
292410.o2 |
292410o2 |
292410.o |
292410o |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{5} \cdot 3^{12} \cdot 5^{9} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2280$ |
$16$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$21870000$ |
$2.745934$ |
$-225866529/62500000$ |
$1.15039$ |
$4.46988$ |
$[1, -1, 0, -370995, -1903789675]$ |
\(y^2+xy=x^3-x^2-370995x-1903789675\) |
3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? |
$[ ]$ |
292410.p1 |
292410p1 |
292410.p |
292410p |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{16} \cdot 3^{10} \cdot 5^{4} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$5.363910117$ |
$1$ |
|
$0$ |
$39813120$ |
$3.019112$ |
$-880659845544969/778240000$ |
$0.97060$ |
$5.01084$ |
$[1, -1, 0, -28071969, -57284294275]$ |
\(y^2+xy=x^3-x^2-28071969x-57284294275\) |
38.2.0.a.1 |
$[(303314/7, 25739041/7)]$ |
292410.q1 |
292410q1 |
292410.q |
292410q |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{22} \cdot 3^{12} \cdot 5^{2} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5322240$ |
$2.104229$ |
$-723908897739/104857600$ |
$0.99139$ |
$3.93678$ |
$[1, -1, 0, -287889, -66408355]$ |
\(y^2+xy=x^3-x^2-287889x-66408355\) |
38.2.0.a.1 |
$[ ]$ |
292410.r1 |
292410r1 |
292410.r |
292410r |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$760$ |
$2$ |
$0$ |
$4.441067970$ |
$1$ |
|
$0$ |
$1244160$ |
$1.503881$ |
$-9/190$ |
$0.90573$ |
$3.28578$ |
$[1, -1, 0, -609, 1105523]$ |
\(y^2+xy=x^3-x^2-609x+1105523\) |
760.2.0.? |
$[(1331/2, 47765/2)]$ |
292410.s1 |
292410s1 |
292410.s |
292410s |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{3} \cdot 19^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2437776$ |
$1.846920$ |
$-1606362201/1000$ |
$0.89636$ |
$3.90502$ |
$[1, -1, 0, -271359, 54505365]$ |
\(y^2+xy=x^3-x^2-271359x+54505365\) |
3.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[ ]$ |
292410.s2 |
292410s2 |
292410.s |
292410s |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{12} \cdot 5 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7313328$ |
$2.396225$ |
$175959/2560$ |
$0.87478$ |
$4.13166$ |
$[1, -1, 0, 243066, 226563380]$ |
\(y^2+xy=x^3-x^2+243066x+226563380\) |
3.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[ ]$ |
292410.t1 |
292410t2 |
292410.t |
292410t |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 5^{2} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$5.010398339$ |
$1$ |
|
$0$ |
$14929920$ |
$2.810135$ |
$-15254837194401/2743600$ |
$0.95463$ |
$4.86307$ |
$[1, -1, 0, -15108459, 22610929013]$ |
\(y^2+xy=x^3-x^2-15108459x+22610929013\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? |
$[(19786/3, 83675/3)]$ |
292410.t2 |
292410t1 |
292410.t |
292410t |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$1.670132779$ |
$1$ |
|
$0$ |
$4976640$ |
$2.260830$ |
$4454223039/1216000000$ |
$1.00269$ |
$4.00706$ |
$[1, -1, 0, 53541, 103445413]$ |
\(y^2+xy=x^3-x^2+53541x+103445413\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? |
$[(1318/3, 286823/3)]$ |
292410.u1 |
292410u1 |
292410.u |
292410u |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.173892975$ |
$1$ |
|
$8$ |
$6635520$ |
$2.264332$ |
$-95381352009/118750000$ |
$0.93689$ |
$4.02730$ |
$[1, -1, 0, -309264, 117591920]$ |
\(y^2+xy=x^3-x^2-309264x+117591920\) |
38.2.0.a.1 |
$[(556, 10552)]$ |
292410.v1 |
292410v1 |
292410.v |
292410v |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{4} \cdot 19^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.890423611$ |
$1$ |
|
$6$ |
$7296000$ |
$2.371521$ |
$175185981/640000$ |
$0.94575$ |
$4.09552$ |
$[1, -1, 0, 345951, 180436605]$ |
\(y^2+xy=x^3-x^2+345951x+180436605\) |
38.2.0.a.1 |
$[(271, 17012), (466, 20807)]$ |
292410.w1 |
292410w1 |
292410.w |
292410w |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{5} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15552000$ |
$2.825657$ |
$-1514592321849/1155200000$ |
$0.94287$ |
$4.57175$ |
$[1, -1, 0, -3363324, -3613715632]$ |
\(y^2+xy=x^3-x^2-3363324x-3613715632\) |
20.2.0.a.1 |
$[ ]$ |
292410.x1 |
292410x1 |
292410.x |
292410x |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.154371072$ |
$1$ |
|
$2$ |
$552960$ |
$1.156927$ |
$3221199/1900$ |
$0.85226$ |
$2.94348$ |
$[1, -1, 0, 4806, -18992]$ |
\(y^2+xy=x^3-x^2+4806x-18992\) |
38.2.0.a.1 |
$[(138, 1736)]$ |
292410.y1 |
292410y1 |
292410.y |
292410y |
$2$ |
$7$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.1, 7.8.0.1 |
7B |
$9576$ |
$96$ |
$2$ |
$55.42648981$ |
$1$ |
|
$0$ |
$9652608$ |
$2.522278$ |
$-9309229569/3200$ |
$0.91597$ |
$4.56832$ |
$[1, -1, 0, -4386759, -3536373187]$ |
\(y^2+xy=x^3-x^2-4386759x-3536373187\) |
7.8.0.a.1, 8.2.0.a.1, 21.16.0-7.a.1.2, 56.16.0.a.1, 168.32.0.?, $\ldots$ |
$[(1758462462369659446783043/26936744893, 130175959604990747857331063469185103/26936744893)]$ |
292410.y2 |
292410y2 |
292410.y |
292410y |
$2$ |
$7$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{14} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.1, 7.8.0.1 |
7B |
$9576$ |
$96$ |
$2$ |
$7.918069973$ |
$1$ |
|
$2$ |
$67568256$ |
$3.495232$ |
$1411546049631/12207031250$ |
$1.01133$ |
$5.17661$ |
$[1, -1, 0, 23392191, 162602859815]$ |
\(y^2+xy=x^3-x^2+23392191x+162602859815\) |
7.8.0.a.1, 8.2.0.a.1, 21.16.0-7.a.1.1, 56.16.0.a.1, 168.32.0.?, $\ldots$ |
$[(6941, 808522)]$ |
292410.z1 |
292410z2 |
292410.z |
292410z |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{2} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.8.0.2 |
3B.1.2 |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7756560$ |
$2.422485$ |
$-199565721/200$ |
$0.87897$ |
$4.43768$ |
$[1, -1, 0, -2534829, -1554067315]$ |
\(y^2+xy=x^3-x^2-2534829x-1554067315\) |
3.8.0-3.a.1.1, 8.2.0.a.1, 24.16.0-24.a.1.6 |
$[ ]$ |
292410.z2 |
292410z1 |
292410.z |
292410z |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{6} \cdot 19^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.8.0.1 |
3B.1.1 |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2585520$ |
$1.873180$ |
$4170519/31250$ |
$0.89305$ |
$3.62898$ |
$[1, -1, 0, 37296, -9591990]$ |
\(y^2+xy=x^3-x^2+37296x-9591990\) |
3.8.0-3.a.1.2, 8.2.0.a.1, 24.16.0-24.a.1.8 |
$[ ]$ |
292410.ba1 |
292410ba2 |
292410.ba |
292410ba |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( 2^{6} \cdot 3^{10} \cdot 5 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6205248$ |
$2.295795$ |
$459240849/320$ |
$0.99957$ |
$4.32918$ |
$[1, -1, 0, -1608864, -784590400]$ |
\(y^2+xy=x^3-x^2-1608864x-784590400\) |
3.8.0-3.a.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1 |
$[ ]$ |
292410.ba2 |
292410ba1 |
292410.ba |
292410ba |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{3} \cdot 19^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2068416$ |
$1.746490$ |
$2520369/500$ |
$0.80924$ |
$3.56646$ |
$[1, -1, 0, -65589, 5257745]$ |
\(y^2+xy=x^3-x^2-65589x+5257745\) |
3.8.0-3.a.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4 |
$[ ]$ |
292410.bb1 |
292410bb1 |
292410.bb |
292410bb |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{5} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$760$ |
$2$ |
$0$ |
$12.97970808$ |
$1$ |
|
$0$ |
$51840000$ |
$3.508907$ |
$-112176061553319621129/1992294400000$ |
$1.03248$ |
$5.59554$ |
$[1, -1, 0, -326443884, -2270136493360]$ |
\(y^2+xy=x^3-x^2-326443884x-2270136493360\) |
760.2.0.? |
$[(79384531/61, 154066626667/61)]$ |
292410.bc1 |
292410bc1 |
292410.bc |
292410bc |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 5 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1451520$ |
$1.451315$ |
$12326391/7220$ |
$0.90262$ |
$3.22468$ |
$[1, -1, 0, 15636, -86860]$ |
\(y^2+xy=x^3-x^2+15636x-86860\) |
20.2.0.a.1 |
$[ ]$ |
292410.bd1 |
292410bd1 |
292410.bd |
292410bd |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.247736028$ |
$1$ |
|
$6$ |
$13271040$ |
$2.469807$ |
$-880659845544969/778240000$ |
$0.97060$ |
$4.48710$ |
$[1, -1, 1, -3119108, 2122680231]$ |
\(y^2+xy+y=x^3-x^2-3119108x+2122680231\) |
38.2.0.a.1 |
$[(3045, 142877)]$ |
292410.be1 |
292410be1 |
292410.be |
292410be |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{22} \cdot 3^{6} \cdot 5^{2} \cdot 19^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.142517713$ |
$1$ |
|
$30$ |
$1774080$ |
$1.554924$ |
$-723908897739/104857600$ |
$0.99139$ |
$3.41305$ |
$[1, -1, 1, -31988, 2470231]$ |
\(y^2+xy+y=x^3-x^2-31988x+2470231\) |
38.2.0.a.1 |
$[(5, 1517), (613, 14285)]$ |
292410.bf1 |
292410bf1 |
292410.bf |
292410bf |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$760$ |
$2$ |
$0$ |
$11.65762723$ |
$1$ |
|
$0$ |
$414720$ |
$0.954576$ |
$-9/190$ |
$0.90573$ |
$2.76204$ |
$[1, -1, 1, -68, -40923]$ |
\(y^2+xy+y=x^3-x^2-68x-40923\) |
760.2.0.? |
$[(2049615/82, 2843213103/82)]$ |
292410.bg1 |
292410bg1 |
292410.bg |
292410bg |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{2} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$10.49556486$ |
$1$ |
|
$0$ |
$4976640$ |
$2.260830$ |
$-15254837194401/2743600$ |
$0.95463$ |
$4.33934$ |
$[1, -1, 1, -1678718, -836882243]$ |
\(y^2+xy+y=x^3-x^2-1678718x-836882243\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? |
$[(53923/6, 430943/6)]$ |
292410.bg2 |
292410bg2 |
292410.bg |
292410bg |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$3.498521620$ |
$1$ |
|
$4$ |
$14929920$ |
$2.810135$ |
$4454223039/1216000000$ |
$1.00269$ |
$4.53079$ |
$[1, -1, 1, 481867, -2793508019]$ |
\(y^2+xy+y=x^3-x^2+481867x-2793508019\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? |
$[(1295, 352)]$ |
292410.bh1 |
292410bh1 |
292410.bh |
292410bh |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 5^{8} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$6.318710323$ |
$1$ |
|
$0$ |
$19906560$ |
$2.813637$ |
$-95381352009/118750000$ |
$0.93689$ |
$4.55104$ |
$[1, -1, 1, -2783378, -3172198463]$ |
\(y^2+xy+y=x^3-x^2-2783378x-3172198463\) |
38.2.0.a.1 |
$[(604847/17, 58256969/17)]$ |