Learn more

Refine search


Results (1-50 of 88 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
292410.a1 292410.a \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1520930070, 22830707063796]$ \(y^2+xy=x^3-x^2-1520930070x+22830707063796\) 38.2.0.a.1 $[ ]$
292410.b1 292410.b \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.327643693$ $[1, -1, 0, -13605, -1175275]$ \(y^2+xy=x^3-x^2-13605x-1175275\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.1, 456.16.0.? $[(3095/2, 166815/2)]$
292410.b2 292410.b \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.442547897$ $[1, -1, 0, 116355, 23855021]$ \(y^2+xy=x^3-x^2+116355x+23855021\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.2, 456.16.0.? $[(193, 7216)]$
292410.c1 292410.c \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $11.10540461$ $[1, -1, 0, -11547555, -16885578475]$ \(y^2+xy=x^3-x^2-11547555x-16885578475\) 38.2.0.a.1 $[(146765, 56136805)]$
292410.d1 292410.d \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -370995, 276302321]$ \(y^2+xy=x^3-x^2-370995x+276302321\) 3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? $[ ]$
292410.d2 292410.d \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 40545, -9333875]$ \(y^2+xy=x^3-x^2+40545x-9333875\) 3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? $[ ]$
292410.e1 292410.e \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 36461835, -17594438075]$ \(y^2+xy=x^3-x^2+36461835x-17594438075\) 20.2.0.a.1 $[ ]$
292410.f1 292410.f \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -29850, 2362886]$ \(y^2+xy=x^3-x^2-29850x+2362886\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? $[ ]$
292410.f2 292410.f \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2640, -21880]$ \(y^2+xy=x^3-x^2+2640x-21880\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? $[ ]$
292410.g1 292410.g \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -6765, 215981]$ \(y^2+xy=x^3-x^2-6765x+215981\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? $[ ]$
292410.g2 292410.g \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 75, 1205]$ \(y^2+xy=x^3-x^2+75x+1205\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? $[ ]$
292410.h1 292410.h \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -20937165, 165678330725]$ \(y^2+xy=x^3-x^2-20937165x+165678330725\) 38.2.0.a.1 $[ ]$
292410.i1 292410.i \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -78585, 13718141]$ \(y^2+xy=x^3-x^2-78585x+13718141\) 3.4.0.a.1, 20.2.0.a.1, 57.8.0-3.a.1.2, 60.8.0.a.1, 1140.16.0.? $[ ]$
292410.i2 292410.i \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 8055, -323315]$ \(y^2+xy=x^3-x^2+8055x-323315\) 3.4.0.a.1, 20.2.0.a.1, 57.8.0-3.a.1.1, 60.8.0.a.1, 1140.16.0.? $[ ]$
292410.j1 292410.j \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.924765539$ $[1, -1, 0, 8625, 708461]$ \(y^2+xy=x^3-x^2+8625x+708461\) 38.2.0.a.1 $[(62, 1185)]$
292410.k1 292410.k \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -468465, 437907581]$ \(y^2+xy=x^3-x^2-468465x+437907581\) 3.4.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 760.2.0.?, 2280.16.0.? $[ ]$
292410.k2 292410.k \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 51375, -15080995]$ \(y^2+xy=x^3-x^2+51375x-15080995\) 3.4.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 760.2.0.?, 2280.16.0.? $[ ]$
292410.l1 292410.l \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1635, 21041]$ \(y^2+xy=x^3-x^2-1635x+21041\) 3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.2, 570.16.0.? $[ ]$
292410.l2 292410.l \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -495, -4115]$ \(y^2+xy=x^3-x^2-495x-4115\) 3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 57.8.0-3.a.1.1, 570.16.0.? $[ ]$
292410.m1 292410.m \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.854194006$ $[1, -1, 0, -780, -8200]$ \(y^2+xy=x^3-x^2-780x-8200\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.1, 456.16.0.? $[(4745/8, 278415/8)]$
292410.m2 292410.m \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.618064668$ $[1, -1, 0, 930, -37954]$ \(y^2+xy=x^3-x^2+930x-37954\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.2, 456.16.0.? $[(643, 15991)]$
292410.n1 292410.n \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1350, -18764]$ \(y^2+xy=x^3-x^2-1350x-18764\) 7.8.0.a.1, 8.2.0.a.1, 56.16.0.a.1, 133.16.0.?, 1064.32.0.?, $\ldots$ $[ ]$
292410.n2 292410.n \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 7200, 876250]$ \(y^2+xy=x^3-x^2+7200x+876250\) 7.8.0.a.1, 8.2.0.a.1, 56.16.0.a.1, 133.16.0.?, 1064.32.0.?, $\ldots$ $[ ]$
292410.o1 292410.o \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1583955, -766922699]$ \(y^2+xy=x^3-x^2-1583955x-766922699\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? $[ ]$
292410.o2 292410.o \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -370995, -1903789675]$ \(y^2+xy=x^3-x^2-370995x-1903789675\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? $[ ]$
292410.p1 292410.p \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.363910117$ $[1, -1, 0, -28071969, -57284294275]$ \(y^2+xy=x^3-x^2-28071969x-57284294275\) 38.2.0.a.1 $[(303314/7, 25739041/7)]$
292410.q1 292410.q \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -287889, -66408355]$ \(y^2+xy=x^3-x^2-287889x-66408355\) 38.2.0.a.1 $[ ]$
292410.r1 292410.r \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.441067970$ $[1, -1, 0, -609, 1105523]$ \(y^2+xy=x^3-x^2-609x+1105523\) 760.2.0.? $[(1331/2, 47765/2)]$
292410.s1 292410.s \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -271359, 54505365]$ \(y^2+xy=x^3-x^2-271359x+54505365\) 3.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? $[ ]$
292410.s2 292410.s \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 243066, 226563380]$ \(y^2+xy=x^3-x^2+243066x+226563380\) 3.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? $[ ]$
292410.t1 292410.t \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.010398339$ $[1, -1, 0, -15108459, 22610929013]$ \(y^2+xy=x^3-x^2-15108459x+22610929013\) 3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? $[(19786/3, 83675/3)]$
292410.t2 292410.t \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.670132779$ $[1, -1, 0, 53541, 103445413]$ \(y^2+xy=x^3-x^2+53541x+103445413\) 3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? $[(1318/3, 286823/3)]$
292410.u1 292410.u \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.173892975$ $[1, -1, 0, -309264, 117591920]$ \(y^2+xy=x^3-x^2-309264x+117591920\) 38.2.0.a.1 $[(556, 10552)]$
292410.v1 292410.v \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.890423611$ $[1, -1, 0, 345951, 180436605]$ \(y^2+xy=x^3-x^2+345951x+180436605\) 38.2.0.a.1 $[(271, 17012), (466, 20807)]$
292410.w1 292410.w \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3363324, -3613715632]$ \(y^2+xy=x^3-x^2-3363324x-3613715632\) 20.2.0.a.1 $[ ]$
292410.x1 292410.x \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.154371072$ $[1, -1, 0, 4806, -18992]$ \(y^2+xy=x^3-x^2+4806x-18992\) 38.2.0.a.1 $[(138, 1736)]$
292410.y1 292410.y \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $55.42648981$ $[1, -1, 0, -4386759, -3536373187]$ \(y^2+xy=x^3-x^2-4386759x-3536373187\) 7.8.0.a.1, 8.2.0.a.1, 21.16.0-7.a.1.2, 56.16.0.a.1, 168.32.0.?, $\ldots$ $[(1758462462369659446783043/26936744893, 130175959604990747857331063469185103/26936744893)]$
292410.y2 292410.y \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.918069973$ $[1, -1, 0, 23392191, 162602859815]$ \(y^2+xy=x^3-x^2+23392191x+162602859815\) 7.8.0.a.1, 8.2.0.a.1, 21.16.0-7.a.1.1, 56.16.0.a.1, 168.32.0.?, $\ldots$ $[(6941, 808522)]$
292410.z1 292410.z \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2534829, -1554067315]$ \(y^2+xy=x^3-x^2-2534829x-1554067315\) 3.8.0-3.a.1.1, 8.2.0.a.1, 24.16.0-24.a.1.6 $[ ]$
292410.z2 292410.z \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, 37296, -9591990]$ \(y^2+xy=x^3-x^2+37296x-9591990\) 3.8.0-3.a.1.2, 8.2.0.a.1, 24.16.0-24.a.1.8 $[ ]$
292410.ba1 292410.ba \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1608864, -784590400]$ \(y^2+xy=x^3-x^2-1608864x-784590400\) 3.8.0-3.a.1.1, 10.2.0.a.1, 30.16.0-30.a.1.1 $[ ]$
292410.ba2 292410.ba \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -65589, 5257745]$ \(y^2+xy=x^3-x^2-65589x+5257745\) 3.8.0-3.a.1.2, 10.2.0.a.1, 30.16.0-30.a.1.4 $[ ]$
292410.bb1 292410.bb \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $12.97970808$ $[1, -1, 0, -326443884, -2270136493360]$ \(y^2+xy=x^3-x^2-326443884x-2270136493360\) 760.2.0.? $[(79384531/61, 154066626667/61)]$
292410.bc1 292410.bc \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 15636, -86860]$ \(y^2+xy=x^3-x^2+15636x-86860\) 20.2.0.a.1 $[ ]$
292410.bd1 292410.bd \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.247736028$ $[1, -1, 1, -3119108, 2122680231]$ \(y^2+xy+y=x^3-x^2-3119108x+2122680231\) 38.2.0.a.1 $[(3045, 142877)]$
292410.be1 292410.be \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.142517713$ $[1, -1, 1, -31988, 2470231]$ \(y^2+xy+y=x^3-x^2-31988x+2470231\) 38.2.0.a.1 $[(5, 1517), (613, 14285)]$
292410.bf1 292410.bf \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $11.65762723$ $[1, -1, 1, -68, -40923]$ \(y^2+xy+y=x^3-x^2-68x-40923\) 760.2.0.? $[(2049615/82, 2843213103/82)]$
292410.bg1 292410.bg \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $10.49556486$ $[1, -1, 1, -1678718, -836882243]$ \(y^2+xy+y=x^3-x^2-1678718x-836882243\) 3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? $[(53923/6, 430943/6)]$
292410.bg2 292410.bg \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.498521620$ $[1, -1, 1, 481867, -2793508019]$ \(y^2+xy+y=x^3-x^2+481867x-2793508019\) 3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? $[(1295, 352)]$
292410.bh1 292410.bh \( 2 \cdot 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $6.318710323$ $[1, -1, 1, -2783378, -3172198463]$ \(y^2+xy+y=x^3-x^2-2783378x-3172198463\) 38.2.0.a.1 $[(604847/17, 58256969/17)]$
Next   displayed columns for results