Properties

Label 29120cf
Number of curves $4$
Conductor $29120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 29120cf have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29120cf do not have complex multiplication.

Modular form 29120.2.a.cf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3 q^{9} + 4 q^{11} + q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 29120cf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29120.bj3 29120cf1 \([0, 0, 0, -128012, -16127984]\) \(884984855328729/83492864000\) \(21887153340416000\) \([2]\) \(184320\) \(1.8735\) \(\Gamma_0(N)\)-optimal
29120.bj2 29120cf2 \([0, 0, 0, -455692, 100395024]\) \(39920686684059609/6492304000000\) \(1701918539776000000\) \([2, 2]\) \(368640\) \(2.2201\)  
29120.bj4 29120cf3 \([0, 0, 0, 824308, 562731024]\) \(236293804275620391/658593925444000\) \(-172646445991591936000\) \([2]\) \(737280\) \(2.5667\)  
29120.bj1 29120cf4 \([0, 0, 0, -6978572, 7095531536]\) \(143378317900125424089/4976562500000\) \(1304576000000000000\) \([4]\) \(737280\) \(2.5667\)